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Abstract 
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

a SENESCYT, Secretaria Nacional de Educación Ciencia y Tecnología / Proyecto Prometeo, ECUADOR.
 bCoordinación General de Laboratorios, Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro, AGROCALIDAD, 

Vía Interoceánica, km 14½ y Eloy Alfaro, Granja MAGAP, EC170184 Quito, Ecuador.
cInstituto Espacial Ecuatoriano (IEE), Dirección de Desarollo Tecnológico, Seniergues E4-676, Edf. IGM 4 piso, 170413 

Quito, Ecuador.

Ingresado: 30/04/2015 Aceptado: 29/06/2015

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI)
has a wide application in vegetative studies as it has
been used to estimate crop yields, pasture performance
and rangeland carrying capacities among others. [8]
NDVI is directly related to other ground parameters,
such as percent of ground cover, photosynthetic activity
of the plant, surface water, leaf area index (LAI) and the
amount of biomass. [15] NDVI is a suitable index to
timate crop production before harvesting, because it is
the optical representation of vegetation canopy
“greenness”. NDVI gives a direct measure of
photosynthetic potential resulting from the composite
property of total leaf chlorophyll, leaf area, canopy cover
and structure. [13, 17, 2, 12, 5, 7]
Rice yield in Egypt was predicted with the use of satellite
remote sensing data. [14] They used two
multi-regression models of LAI, as one input factor, and
NDVI or any other vegetation index. These indices were
calculated from visible and near-infrared spectral
reflectance, under normal environmental conditions and
common agricultural practices during the period of the
maximum vegetative growth. The result was the best
practice for rice yield forecasting using satellite imagery.
A model to predict crop growth and yield variability using
airborne multispectral and hyperspectral imagery and
high-resolution satellite imagery, taken during the
growing season, was proposed by Yang et al. [19] Their
model can be used to monitor crop growing conditions
and identify potential production problems, which could
be addressed within the growing season. A yield
estimation algorithm of corn and soybean in Midwestern
USA, which did not require retrospective analysis to
construct the empirical relationships between reported
yields and remotely sensed data, was developed and
proposed by Xin et al. [18] Those authors recommended
that development of future yield estimation methods,
based on production efficiency models, should consider
the sub-pixel spatial heterogeneity and irrigation effects.
Another yield estimation method using the relationship
between LAI and yield was proposed by Zhang et al. [22]
These authors developed a relationship between
climate variability impact index (CVII) and crop
production using historical data. The CVII-based model
can provide near real-time, global coverage of the
percent change in the climatological crop yield.
This study aimed to develop a yield prediction model for
maize, based on spectro-radiometer readings and
satellite imagery, using machine learning algorithms and
fuzzy logic. It was hypothesized that vegetation indices
obtained from remote sensing data fairly represented
the crop productive characteristics in the field, under the
variable conditions of the two regions of Ecuador where
the study took place: coast and highland regions. Thus,
predicted models could give an early warning for

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of
6–11 m above sea level (a.s.l.) and has a clearly marked
dry season between June and November with around
128 mm, while the precipitation in the rainy season

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through
December with nearly 90 mm, while the rainy season
receives 1181 mm of precipitation and the average
temperature is 25.6° C. Although in the highlands,
Pindal has a tropical climate, its altitude is around 774 m
a.s.l. The dry season lasts from June through November
with nearly 302 mm, while the rainy season receives 837
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 

Acknowledgements
The authors acknowledge the projects “Producción de 
semillas de alto rendimiento”, MAGAP (Ministry of 
Agriculture, Livestock and Fisheries of Ecuador) and 
“Generación de Geoinformación para Gestión 

Territorial” (Instituto Espacial Ecuatoriano -IEE), which 
defined the study area. We are also thankful to Gabriela 
Carrera, Grace Benavídez-Gutiérrez, Andrea 
Córdova-Cruzatty, Alejandra Cabrera and Christian 
Fernández for data collection and technical support. 
Special thanks to the Secretaría de Educación Superior, 
Ciencia, Tecnología e Innovación (SENESCYT) of the 
Republic of Ecuador for financial support and to the 
PROMETEO project for support during writing of this 
manuscript.

References
[1] J. S. Ahlrichs, M. E. Bauer (1983) “Relation of 
Agronomic and Multispectral Reflectance 
Characteristics of Spring Wheat Canopies”, Agron. J. 
75(6), 987–993. 
[2] T. N. Carlson, D. A. Ripley (1997) “On the relation 
between NDVI, fractional vegetation cover, and leaf area 
index”, Remote Sens. Environ. 62(3), 241 – 252. 
[3] Climate-Data.org (2015) “Clima: Ecuador”, Available 
online, Last accessed 25 July 2015. 
[4] Ecuavisa (2012) “Noticias: Desperdicio de maíz 
destapa corrupción en Ministerio de Agricultura (News: 
Wasting of maize production uncovers corruption inside 
the Ministry of Agriculture)”, Available online, Last 
accessed 16 March 2015. 
[5] J. C. D. M. Esquerdo, J. Z. Júnior, J. F. G. Antunes 
(2011) “Use of NDVI/AVHRR time-series profiles for 
soybean crop monitoring in Brazil”, Int. J. Remote Sens. 
32(13), 3711–3727. 
[6] C. Ferencz, P. Bognár, J. Lichtenberger, D. Hamar, 
G. Tarcsai, G. Timár, G. Molnár, S. Pásztor, P. 
Steinbach, B. Székely, O. E. Ferencz, I. Ferencz-Árkos 
(2004) “Crop yield estimation by satellite remote 
sensing”, Int. J. Remote Sens. 25(20), 4113–4149. 
[7] R. R. V. Gonçalves, J. Z. Jr, L. A. S. Romani, C. R. 
Nascimento, A. J. M. Traina (2012) “Analysis of NDVI 
time series using cross-correlation and forecasting 
methods for monitoring sugarcane fields in Brazil”, Int. J. 
Remote Sens. 33(15), 4653–4672. 
[8] H. J. Heege, E. Thiessen (2013) “Sensing of Crop 
Properties”, In H. J. Heege, (Ed.) Precision in Crop 
Farming, 1 edn., pp. 103–141, Springer Netherlands. 
[9] INIAP (2014) “Instituto Nacional de Investigaciones 
Agropecuarias (National Institute of Agricultural 
Research, Ecuador)”, Available online, Last accessed 
14 November 2014. 
[10] M. Kalubarme, M. Hooda,R.S.and Yadav, G. Saroha 
(2006) “Spectral vegetation indices and its response to 
in-situ measured leaf area index of cotton”, In ISPRS, 
(Ed.) Symposium of ISPRS Commission IV, 25-30 
September, Goa, India, vol. Volume XXXVI Part 4, pp. 
1–6, International Society for Photogrammetry and 
Remote Sensing, ISPRS, Commission IV, Goa, India: 
ISPRS. 

[11] H. R. Matinfar (2013) “Modeling wheat yield 
estimation base upon spectral data and field 
measurement, case study: Razan plain, Iran”, Technical 
Journal of Engineering and Applied Sciences 3(17), 
2123–2130. 
[12] J. Moore, N. Holden (2003) “Examining the 
development of a potato crop nutrient management trial 
using reflectance sensing”, In ASAE, (Ed.) 2003 ASAE 
Annual Meeting, Paper number 031133, pp. 1–9, 
American Society of Agricultural and Biological 
Engineers (ASAE), St. Joseph, Michigan, USA: 
American Society of Agricultural and Biological 
Engineers. 
[13] R. R. Nemani, S. W. Running (1989) “Testing a 
theoretical climate-soil-leaf area hydrologic equilibrium 
of forests using satellite data and ecosystem 
simulation”, Agric. For. Meteorol. 44(3–4), 245–260. 
[14] N. Noureldin, M. Aboelghar, H. Saudy, A. Ali (2013) 
“Rice yield forecasting models using satellite imagery in 
Egypt”, Egyptian Journal of Remote Sensing and Space 
Science 16(1), 125–131. 
[15] J. J. Rouse, R. Haas, J. Schell, D. Deering (1974) 
“Monitoring Vegetation Systems in the Great Plains with 
Erts”, In NASA Goddard Space Flight Center 3d ERTS-1 
Symposium (1974), vol. 351, pp. 309–317. 
[16] T. P. Ryan (2013) Sample size determination and 
power, Wiley Series in Probability and Statistics, 
Hoboken, New Jersey, USA.: John Wiley & Sons, Inc., 
1–404 pp. 
[17] C. Wiegand, S. Maas, J. Aase, J. Hatfield, P. P. Jr., 
R. Jackson, E. Kanemasu, R. Lapitan (1992) “Multisite 
analyses of spectral-biophysical data for wheat”, 
Remote Sens. Environ. 42(1), 1–21. 
[18] Q. Xin, P. Gong, C. Yu, L. Yu, M. Broich, A. E. 
Suyker, R. B. Myneni (2013) “A Production Efficiency 
Model-Based Method for Satellite Estimates of Corn and 
Soybean Yields in the Midwestern US”, Rem. Sens. 
5(11), 5926–5943. 
[19] C. Yang, J. Everitt, Q. Du, B. Luo, J. Chanussot 
(2013) “Using High-Resolution Airborne and Satellite 
Imagery to Assess Crop Growth and Yield Variability for 
Precision Agriculture”, Proceedings of the IEEE 101(3), 
582–592. 
[20] C. Zadoks, T. Chang, F. Konzak (1974) “A decimal 
code for the growth stages of cereals”, Weed Res. 14(6), 
415–421. 
[21] E. Zambrano, F. Hernández (2007) “Inicio, duración 
y término de la estación lluviosa en cinco localidades de 
la costa ecuatoriana”, Acta Oceanográfica del Pacífico
14(1), 7–11. 
[22] P. Zhang, B. Anderson, B. Tan, D. Huang, R. Myneni 
(2005) “Potential monitoring of crop production using a 
satellite-based Climate-Variability Impact Index”, Agric. 
For. Meteorol. 132(3–4), 344–358. 

ECUADOR ES CALIDAD: Revista Científica Ecuatoriana., 2015, Vol. 2, No. 1.

Rueda Ayala et al. Yield prediction with spectral data.

Figure 1. Maize producing Provinces in Ecuador and their respective 
sampled counties 



Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2  was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2 
determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x 
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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Model  Mathematical approach  
1  Linear regression   
2  Linear regression  
3  Linear regression  
4  Six degree polynomial regression  
5  Multinomial logistic regression   
6  Multinomial logistic regression 

using polynomial features  

* Non estimable

R2  Accuracy (%)
0.43  NA *
0.35  NA
0.53  NA
0.86  NA*
NA  52
NA  61     

Table I. Comparison of accuracy of the tested maize yield estimation 
models.  

EY = 65.05 + 117.68 . NDVI_1     (2)
EY = -20.37 + 234.86 . NDVI_2     (3)

EY = -47.92 + 102.32 . NDVI_1 + 188.31 .  NDVI_2     (4)
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Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 
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included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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Figure 2.Yield prediction using a six degree polynomial regression 
algorithm (model 4) and calculated NDVI from spectral data acquired 
at maize stages BBCH 17-19 (NDVI-1) and BBCH 51 (NDVI-2). a) 
Depiction of predicted (blue symbols) and observed yield (red 
symbols) and NDVI-1; b) 3D comparison of observed with predicted 
yield and NDVI-1 and NDVI-2 values.

* Yield predicted using model 5 was within these classes

8
8
7
6
5
4
3
2
1

Yield class code*

9.2–10  
8.1–9.1  
7.2–8.0  
6.3–7.1  
5.4–6.2  
4.5–5.3  
3.6–4.4  
2.7–3.5  
1.8–2.6

Yield range
(t ha-1)

Table II.Classification yield range obtained from the field assessments 
and yield prediction using multinomial logistic regression, within those 
class codes. 

* Observed yield from 4 farms with similar NDVI values, within each
county
†Using model 4, six degree polynomial regression, R2 = 0.86 (Table I)
‡Estimated using model 6 (61% accuracy); yield class according to
Table II

Province
Yield
class‡

Estimated 
yield†

(t ha-1)

5.3 
4.8 
7.5 
4.9 
4.5 
5.2 
7.7 
2.6 
5.9 
8.4 

4 
4 
5 
4 
4 
4 
7 
1 
4 
4 

Guayas

3.3 
5.5 
4.3 
4.8 
4.9 
6.1 
5.2 
4.8 
5.4 

2 
5 
4 
5 
4 
5 
5 
4 
4 

Loja

NDVI-1

0.37 
0.49 
0.52 
0.53 
0.54 
0.56 
0.63 
0.64 
0.64 
0.71 

0.02 
0.26 
0.34 
0.39 
0.51 
0.54 
0.55 
0.62 
0.67 

0.58 
0.64 
0.66 
0.66 
0.66 
0.68 
0.74 

NDVI-2

0.69 
0.69 
0.56 
0.62 
0.5 
0.56 
0.71 
0.76 
0.78 
0.73 

0.65 
0.64 
0.63 
0.64 
0.66 
0.7 
0.55 
0.6 
0.64 

0.6 
0.54 
0.67 
0.64 
0.69 
0.72 
0.75 

Actual yield*
(t ha-1)

5.4 
5.2 
7.6 
5.0 
4.4 
4.6 
7.5 
2.2 
6.1 
7.4 

3.3 
5.4 
4.4 
5.8 
4.7 
6.3 
5.7 
4.6 
5.2 

2.7 
4.4 
4.7 
6.0 
6.3 
7.8 
7.1 

3.2 
3.7 
5.4 
4.7 
6.4 
7.3 
6.8 

1 
3 
5 
4 
5 
4 
5 

Manabí 
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Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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Abstract
Yield estimation for the maize crop (Zea mays L.) is 
required in Ecuador for decision making on imports and 
commercialization. In the literature many yield predictive 
models have been developed for different crops, but 
they need to be adapted to the local conditions. In this 
study, machine learning techniques and statistical tools 
such as simple, logistic and polynomial regression were 
applied in order to develop yield predictive algorithms. 
Spectral information was gathered from 119 farms 
monitored across the four traditionally maize producing 
provinces of Ecuador, Guayas, Loja, Manabí and Los 
Ríos. Spectroradiometer readings were collected at two 
crop development stages; full leaf development and the 
beginning of tassel emergence. A model using six 
degree polynomial regression delivered the best yield 
predictive capability under Ecuadorian conditions. This 
model should be evaluated in future years and locations 
in order to be fine-tuned with out-of-sample testing. After 
validation, this model could be recommended for 
decision making on imports strategies in order to avoid 
overlapping with the national production. This tool can 
also offer an early warning of the sites requiring 
technical assistance and practices to improve yield. 
Further model improvement could be achieved by 
including variables such as climatic conditions, 
agricultural practices and soil characteristics. Future 
models may also be developed for other crops of 
importance.

Keywords: machine learning, NDVI, proximal sensing, 
remote sensing, regression.

ELABORACIÓN DE MODELOS DE PREDICCIÓN DE 
RENDIMIENTO EN MAÍZ USANDO INFORMACIÓN 
ESPECTRAL PARA APLICACIONES DE 
AGRICULTURA DE PRECISIÓN

Resumen
Para lograr una acertada toma de decisiones de 
importación y comercialización de la cosecha de maíz 
(Zea mays L.) en el Ecuador, se requieren herramientas 
de predicción del rendimiento. Si bien en la literatura se 
encuentran varios modelos de predicción para 
diferentes cultivos, no pueden ser aplicados en el 
Ecuador sin ser adaptados a las condiciones locales. En 
este estudio se usaron técnicas de aprendizaje 
automático y herramientas estadísticas de regresión 
simple, logística y polinomial para elaborar algoritmos 
de predicción. Dentro de las provincias tradicionalmente 
productoras de maíz en el Ecuador, Guayas, Loja, 
Manabí y Los Ríos, se midió la reflectancia espectral del 
maíz en 119 predios. Esta reflectancia fue tomada con 
un espectro-radiómetro, en dos etapas de crecimiento 
del cultivo: culminación del desarrollo foliar e inicio de la 
floración. La mejor capacidad predictiva en condiciones 
Ecuatorianas se obtuvo con un modelo de regresión 
polinomial de sexto grado. Este modelo debe ser 
evaluado con datos de otros años y localidades para así 
ser ajustado y comprobado con la nueva data. Una vez 
validado, el modelo podría ser recomendado para 
contribuir en la toma de decisiones de la cantidad de 
maíz a importar y así evitar afectar el solapamiento con 
la producción nacional. Este modelo también puede 

generar una alerta temprana de los predios que 
requieren asesoría técnica para mejorar la 
productividad. Al incluir otras variables como clima, 
prácticas agrícolas y características de suelo en la 
elaboración del modelo, este puede mejorar su 
desempeño. En el futuro este modelo puede adaptarse 
a otros cultivos de importancia para el país.

Palabras clave: aprendizaje automático, NDVI, 
sensoramiento proximal, sensoramiento remoto, 
regresión.

I. INTRODUCTION

In Ecuador, maize (Zea mays L.) is one of the most 
important crops, as it is worldwide. Production of  “hard 
maize” is destined for animal feed, while “soft maize” 
production serves for human consumption. Recently, the 
Ecuadorian government has prioritized the elaboration 
of yield predictive models, in order to develop decision 
making strategies for imports and commercialization 
purposes. Demand in Ecuador is around 1.2 Mt of maize 
grain, while national production reaches only 0.5 Mt. [4] 
During 2012, the national harvesting was severely 
affected due to imports at lower price. Imports of maize 
grain attempted to satisfy the national demand. These 
imports should have ended before February 15th, but 
they continued entering the country and overlapping the 
national production. 
Research on maize crop in Ecuador has been focused 
on genetic enhancement, agricultural management and 
crop protection practices. [9] However, little has been 
done on site adaptability and yield responses of the 
distributed varieties to a specific zone. Furthermore, 
there have been no attempts to develop yield estimation 
models to predict the production at those specific sites. 
Estimation of maize production is done through field 
data assessment and extrapolation to a county and 
province level, which is costly and time consuming. 
Conversely, in the literature many crop yield prediction 
models were created using remote sensing data and 
deriving vegetation indices (e.g. NDVI, LAI, REIP), 
which is much more time effective. Additionally, crop 
state variables and climate variables from the 
crop/soil/atmosphere interfaces were included in the 
model development to predict the crop production 
before harvest in different crops. [1, 13, 17, 6, 10, 11, 12] 
However, most of these models are confined to 
particular regions and/or periods, thus they cannot be 
applied directly. Therefore, it is required reliable yield 
prediction models for Ecuador. 
Remote sensing data have been proven to be an 
effective tool for yield prediction in different crops. 
Vegetation indices extracted from spectral data have 

been employed for constructing the predictive models. 
[8]The Normalized Difference Vegetation Index (NDVI) 
has a wide application in vegetative studies as it has 
been used to estimate crop yields, pasture performance 
and rangeland carrying capacities among others. [8] 
NDVI is directly related to other ground parameters, 
such as percent of ground cover, photosynthetic activity 
of the plant, surface water, leaf area index (LAI) and the 
amount of biomass. [15] NDVI is a suitable index to 
timate crop production before harvesting, because it is 
the optical representation of vegetation canopy 
“greenness”. NDVI gives a direct measure of 
photosynthetic potential resulting from the composite 
property of total leaf chlorophyll, leaf area, canopy cover 
and structure. [13, 17, 2, 12, 5, 7] 
Rice yield in Egypt was predicted with the use of satellite 
remote sensing data. [14] They used two 
multi-regression models of LAI, as one input factor, and 
NDVI or any other vegetation index. These indices were 
calculated from visible and near-infrared spectral 
reflectance, under normal environmental conditions and 
common agricultural practices during the period of the 
maximum vegetative growth. The result was the best 
practice for rice yield forecasting using satellite imagery. 
A model to predict crop growth and yield variability using 
airborne multispectral and hyperspectral imagery and 
high-resolution satellite imagery, taken during the 
growing season, was proposed by Yang et al. [19] Their 
model can be used to monitor crop growing conditions 
and identify potential production problems, which could 
be addressed within the growing season. A yield 
estimation algorithm of corn and soybean in Midwestern 
USA, which did not require retrospective analysis to 
construct the empirical relationships between reported 
yields and remotely sensed data, was developed and 
proposed by Xin et al. [18] Those authors recommended 
that development of future yield estimation methods, 
based on production efficiency models, should consider 
the sub-pixel spatial heterogeneity and irrigation effects. 
Another yield estimation method using the relationship 
between LAI and yield was proposed by Zhang et al. [22] 
These authors developed a relationship between 
climate variability impact index (CVII) and crop 
production using historical data. The CVII-based model 
can provide near real-time, global coverage of the 
percent change in the climatological crop yield. 
This study aimed to develop a yield prediction model for 
maize, based on spectro-radiometer readings and 
satellite imagery, using machine learning algorithms and 
fuzzy logic. It was hypothesized that vegetation indices 
obtained from remote sensing data fairly represented 
the crop productive characteristics in the field, under the 
variable conditions of the two regions of Ecuador where 
the study took place: coast and highland regions. Thus, 
predicted models could give an early warning for 

decision making in agricultural policy to schedule 
imports.

II. METHODOLOGY

2.1 Experimental site
Assessments of maize cropping systems across the four 
major producing provinces in Ecuador, were used to 
develop the model. Surveyed provinces were: Los Ríos, 
Manabí, Guayas in the coastal zone, and Loja in the 
highlands. Three major production zones with their 
corresponding sub-regions were identified (Figure 1). 
Zone 1: Province of Los Ríos, counties Ventanas and 
Mocache; Zone 2: Provinces of Manabí and Guayas, 
counties Tosagua and Balzar; and Zone 3: Province of 
Loja, county Pindal. Within those counties some farms 
were monitored since sowing to harvesting date. These 
farms had been monitored on the above mentioned 
projects and a field survey was carried out in this study. 
Each farm had an area between 1.5 to 3.5 ha. All 
farmers and direct participants in the maize production 
chain, contributed to generate land cover and use maps 
(scale 1:25,000).

Agro-climatic conditions in these provinces have 
traditionally shown better suitability for maize 
production. The coastal zone of Ecuador is influenced 
by the Humbolt ocean current and the warm phase of El 
Niño Southern Oscillation, which produce a climate 
combination of the Tropical savannah and Tropical 
monsoon, with high temperatures almost the whole year. 
[21] Ventanas and Mocache are located at an altitude of 
6–11 m above sea level (a.s.l.) and has a clearly marked 
dry season between June and November with around 
128 mm, while the precipitation in the rainy season 

reaches 1800 mm; temperatures vary between 22 and 
33° C. [3] Tosagua is between 6 to 350 m a.s.l. of 
altitude; the dry season occurs from June through 
December with 85 mm, while the rainy season receives 
nearly 604 mm of precipitation, and the temperature 
oscillates from 22 to 32° C. Balzar is between 4 and 6 m 
a.s.l. of altitude; the dry season goes from June through 
December with nearly 90 mm, while the rainy season 
receives 1181 mm of precipitation and the average 
temperature is 25.6° C. Although in the highlands, 
Pindal has a tropical climate, its altitude is around 774 m 
a.s.l. The dry season lasts from June through November 
with nearly 302 mm, while the rainy season receives 837 
mm of precipitation; the average temperature is 23° C.

2.2 Field assessments
From each farm in the selected counties, yield was 
measured within squares of 5 × 5 m, repeated at least 
two times within each farm if conditions were more 
homogeneous and the farm was smaller than 1 ha. The 
number of samples increased in bigger farms and more 
heterogeneous conditions. However, in some farms only 
one sample was allowed to be taken, in order to affect 
insignificantly the farmers’s profit. Yield parameters 
measured within each square were: harvested plant 
density, number of cobs per plant, fresh weight of cobs 
and grain weight at 13% humidity. Grain yield was 
measured as dry weight in kg per 25 m-2   and the values 
were extrapolated to the whole field size in t ha-1. 
Across the three zones for maize production in Ecuador 
during the growing season 2013–2014, sampling areas 
were depicted as a grid in a map. GIS tools were applied 
using the software ArcGIS® version 10.1 (ESRI©, 
Environmental Systems Research Institute, Inc., 
1995–2014) to draw the grid. The borders of the 
counties were marked at each maize producing zone 
and the surrounding area was calculated. Within each 
county, a grid of 250 × 250 m cell size was created, 
delivering a raster file of 6.25 ha pixel resolution. A total 
of 119 farms were sampled, which covered nearly 323 
ha. The sample size was calculated using Equation (1), 
according to Ryan [16]:

where n is the sample size,        is the critical statistical 
value, the positive Z value that is at the vertical 
boundary of the area of       in the right tail of the standard 
normal distribution. σ is the population standard 
deviation, and Ε is the maximum difference observed 
between the sample mean and the value of the 
population mean µ.

Spectral information was acquired across the study 
zones in each of the 129 farms; maize yield could be 
measured in 119 farms. A Fieldspec 4 Hi-Res 
Spectroradiometer (Analytical Spectral Devices, Inc., 
ASD, Boulder, Colorado) was used to measure the 
reflectance. This device measured the spectral range 
between 350 and 2500 nm, covering the visible and 
near-infrared spectral region (Vis / NIR). This instrument 
can capture spectral signatures of objects, due to its 
sensitivity to the radiation reflected at different 
wavelengths. Prior to measurements, the 
Spectroradiometer was calibrated using a standard 
white reference: Spectralon©Labsphere Inc., North 
Sutton, New London, USA). The optical fiber of the 
Spectroradiometer was pointed perpendicular to the 
Spectralon during 10s, and the measured value 
corresponded to pure or zero reflectance. A field of view 
(FOV) of 25° was achieved for the optical fiber, at a 
distance of 80 cm from the measured surface. In order to 
capture the spectral reflectance on maize plants, the 
optical fiber was perpendicularly pointed to canopy. 
Measurements took place at two development stages of 
maize, full leaf development (BBCH 17–19) and 
beginning of tassel emergence (BBCH 51), according to 
Zadoks et al. [20] Normalized Difference Vegetation 
Index (NDVI) was calculated from the obtained spectral 
signatures. NDVI calculated from spectral data taken at 
BBCH 17–19 is referred to hereafter as NDVI_1; NDVI 
calculated from spectral data assessed at BBCH 51 is 
referred to hereafter as NDVI_2.

2.3 Model development
Machine learning techniques were applied to develop 
algorithms, program and train the models. Machine 
learning is a prediction-making discipline in computer 
science that allows to create a model that “learns” from 
example inputs to make predictions, such that the 
prediction results improves with every model run. 
Statistical tools such as simple linear regression, logistic 
regression, polynomial regression and multinomial 
logistic regression with polynomial features were 
explored to propose an efficient yield estimation model. 
However, simple linear regression models do not 
consider other influential variables, such as topography 
and climatic conditions. 
Six models were constructed using the whole country 
dataset of NDVI_1 and NDVI_2 calculated from spectral 
signatures. Simple linear regression was the basis for 
models 1 to 3. NDVI_1 was separately used to identify a 
relationship with observed yield in model 1, while 
NDVI_2 was used in model 2. Model 3 used combined 
features of NDVI_1 and NDVI_2. However, these three 
models did not show a significant predictive capability. 
Therefore, polynomial regression (model 4), multinomial 
logistic regression (model 5) and multinomial logistic 

regression using polynomial features (model 6) fitted the 
data better and allowed more accurate yield estimation. 
Cross validation was applied to all models, in order to 
determine the accuracy level; R2 was also calculated 
when possible. 

III. RESULTS AND DISCUSSION

Linear regression did not permit an accurate yield 
prediction, as they fitted poorly NDVI data, which was 
visible due to the low calculated R2 (Table 1). Equations 
(2), (3) and (4) show the mathematical structure of 
models 1, 2 and 3, respectively: 

where EY is the estimated maize yield, and NDVI_1 and 
NDVI_2 are the calculated NDVI at BBCH 17–19 and 
BBCH 51, respectively.

Developed models using polynomial regression, 
multinomial logistic regression and multinomial logistic 
regression with polynomial features, delivered a better 
yield estimation capability than simple linear regression. 
In linear and polynomial regression (models 1–4),   R2

determines how well the model fits the data. However, in 
logistic regression R  does not explain the goodness of 
fit to the data, because the output is binomial (either 0 or 
1). Thus, the percentage of accuracy of prediction was 
calculated as a measure of how well the model fitted the 
observed data. Training accuracy was calculated with 
the formula training_accuracy = mean_predicted_yield x
(yield_predicted – yield_observed)  x  100. 
Table I displays the comparison of accuracy for models 
5 and 6. Prediction models 4–6 used combined features 
NDVI_1 and NDVI_2. Model 4 exhibited better 
prediction accuracy compared with the others and to 
linear regression models. Due to its best performance, 
six degree polynomial regression can be recommended 
to forecast maize yield under Ecuadorian conditions, 
according to the observed data. In Figure 2, sixth degree 

polynomial regression (model 4) is shown. Normalized 
features and feature scaling were used to avoid 
over-fitting problems. Prediction models of higher 
degree of polynomial regression over-fitted the data and 
did not perform an acceptable prediction, while models 
using lower order polynomial under-fitted the data. For 
Models 5 and 6, “one vs. all” approach was used for 
multinomial logistic regression. Models 5 and 6 showed 
an acceptable accuracy in prediction, especially 
compared with linear regression models. Monitored 
yield data was classified in eight classes (Table II) and 
predicted yield was estimated within those ranges. 

Table III shows the measured yield averaged from four 
farms having similar NDVI values, correspondingly 
within each county and Province. Yield data from Los 
Ríos showed many inconsistencies such as extreme low 
or high values, thus they were not used for prediction 
purposes. The predicted yield according to model 4 and 
predicted yield class by model 6 is presented. Both 
models generated an acceptable yield estimation. 
However, further model improvement can be done with 
other machine learning techniques, in order to 
recommend a definitive model for the whole country.
Climatic conditions, soil type and crop management 
practices need to be included in the model for model 
improvement and better yield estimation. Among the 
climatic data, temperature data, humidity and 
precipitation would provide the algorithm with more 
specificity, in order to perform better to local (county) 
assessments. Likewise, soil type, soil texture, water 
capacity retention and soil fertility can be variables 
which would improve the predictive capability of the 
algorithm. Moreover, agricultural practices such as 
fertilization, irrigation, pest management can be 

included in the model, in order to determine which 
variable in fact affects the yield. The majority of higher 
yield ranges and classes were obtained in the provinces 
of Guayas, followed by Manabí. Therefore, strategies to 
increase the productivity should be prioritized in the 
province of Loja. Model 4, using six degree polynomial 
regression, delivered the best yield predicting capability. 
This model should be evaluated in future years and 
locations in order to be fine-tuned with out-of-sample 
testing. After validation, this model could be 
recommended for decision making on imports 
strategies, to prevent the overlapping with the national 
production. Moreover, since NDVI indices were good 
features in the modeling process, NDVI extracted from 
satellite images could be obtained before the maize 
harvesting season, thus an early warning strategy can 
be designed for the sites requiring technical assistance 
and practices to improve yield. Special attention could 
be given to earlier development stages for calculating 
the NDVI, since NDVI at BBCH 17–19 showed to be 
better inputs for yield forecasting.

IV. CONCLUSION

Yield estimation models are used in precision 
Agriculture to increase yield production to meet demand 
and to recommend to the government in regard to 
decision making on imports of maize to avoid 
overlapping. Data were collected from four provinces 
with a sampled area of nearly 300 ha. In this paper, six 
models were tested in their yield prediction capabilities. 
Spectroradiometer readings were used for model inputs. 
Machine learning algorithms offered acceptable 
estimation accuracy, although higher predictive power 
may be obtained when other variables, such as climate, 
agricultural practices and soil characteristics are 
including in the model development. The model using 
six degree polynomial regression could be 
recommended for Ecuadorian conditions. In Ecuador, 
yield predictive models are not existent for any crop. 
Using results from this study, the Ministry of Agriculture 
could have a tool for decision taking about the accurate 
amounts of maize to be imported, and avoid the 
overlapping with the national production. This model can 
be reformulated using other crop assessments in the 
future, to develop strategies for increasing yield and land 
territorial management in other crops of importance, 
such as rice and potato. 
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